圆与直线相切公式例题!圆与直线相切公式例题及答案?

中考几何进阶 31 辅助线法则 圆幂的概念和圆幂定理

【圆幂的定义】

对于一个已知圆,和一个不在圆上的已知点P,该点到该圆的最小距离与最大距离的乘积的绝对值,称为该点对该圆的圆幂,简称点P的圆幂。

P在圆外:

圆与直线相切公式例题!圆与直线相切公式例题及答案?

P在园内:

圆与直线相切公式例题!圆与直线相切公式例题及答案?

圆幂定理

之所以有上述圆幂定义,乃因为如下事实:

过P引任意一条与圆相交或相切的直线,设与圆相交于点A和点B(A、B可重合因而成切线),则PA·PB的值等于圆幂,是一个定值。

这个结论,便称之为圆幂定理。

割线定理

当P在圆外,圆幂定理又称为割线定理,并表述为:

过P的任意两条直线L1和L2,分别与圆相交于A、B和C、D,则

PA·PB=PC·PD

切割线定理

若其中的C、D重合,并记为点T,则L2为圆的一条切线,则

PT2=PA·PB

此时亦称为切割线定理。

相交弦定理

若P点在圆内,圆幂定理又称为相交弦定理,表述为:

过P的两条弦分别交圆于A、B和C、D,则

PA·PB=PC·PD

通过相似三角形,可以证明以上诸定理。在此略过。

圆幂定理的几何图像,如所示。

圆与直线相切公式例题!圆与直线相切公式例题及答案?

圆与直线相切公式例题!圆与直线相切公式例题及答案?

这里把弦切角定理,也归纳入圆幂定理当中。

圆幂定理的逆应用,提供了另外判断四点共圆的方法:若PA·PB=PC·PD,则A、B、C、D四点共圆。

应用题例

如图△ABC和Rt△AED,E是BC上一点,且BE=11,CE=3;AB=AC=AD,求ED的长度?

圆与直线相切公式例题!圆与直线相切公式例题及答案?

〖一般性提点〗

线段长度或者线段比,通常是求解Rt三角形,或者通过全等三角形,或者相似三角形等方法来找未知线段和已知线段之间的关系。

如何去构造这些三角形,则具体问题要具体分析。

〖题目分析〗

解Rt三角形或者找全等三角形求未知线段,从题设看不到任何思路。余下的途径就是寻找或构造相似三角形。

题设已知条件,有共点的诸相等线段。我们知道到一个定点的距离相等的诸点共圆,而且已知线段BEC会让人想起相交弦定理:BC是圆的一条弦,而所求ED是另一条弦的部分。

圆与直线相切公式例题!圆与直线相切公式例题及答案?

B、C、D均在以A为圆心,以AB为半径的圆上,延长DE交圆A于另一点F,根据垂径定理:EF=ED。连接CD、BF,则△CDE∽△FBE,或者直接由相交弦定理,有:

ED·EF=BE·CE,即

ED2=BE·CE=33

ED=√33.

全学科群,学习网课资料添加 微信:a350684171  备注:学习

本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 524609750@qq.com 举报,一经查实,本站将立刻删除。
如若转载,请注明出处:https://www.zmz22.com/6901.html